

4.2 OPERATIONAL QUANTITIES FOR RADIATION MONITORING 4.2.6 Summary of operational quantities						
		Weakly penetrating radiation	Strongly penetrating radiation			
	Area monitoring	H * (0.07), H * (3) H'(0.07,Ω), H'(3,Ω)	Η*(10) Η'(10,Ω)			
	Individual monitoring	$H_{\rm p}(0.07), H_{\rm p}(3)$	<i>H</i> _p (10)			
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.2.6 Slide 1 (26/107)						

4.2 OPERATIONAL QUANTITIES FOR RADIATION MONITORING 4.2.6 Summary of operational quantities				
	Area monitoring	$H^*(d)$ and $H'(d)$ are measured with survey meters of which the reading is linked to the equivalent dose in the ICRU sphere.		
	Individual monitoring	$H_{\rm p}({\rm d})$ is measured with a dosimeter which is worn at the surface of the body and covered with the appropriate layer of a tissue-equivalent material.		
(Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.2.6 Slide 2 (27/107)		

IAEA

- Build-up caps are required to improve detection efficiency when measuring high-energy photon radiation, and they should be removed when measuring lower energy photons (10 keV - 100 keV) and beta particles.
- Beta-gamma survey meters have a thin end-window to register weakly penetrating radiation.
- ❑ The gamma efficiency of these detectors is only a few percent (as determined by the wall absorption), while the beta response is near 100% for beta particles entering the detector.

Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.3.1 Slide 2 (35/107)

4.3 AREA SURVEY METERS **4.3.2 Proportional counters** □ At a sufficiently high voltage 1013 Region of limited charge multiplication may occur portionality (proportional region). 1010 Recombination region • This occurs when the primary Ionization 10* ions gain sufficient energy chamber region between successive collisions, 10* roportic in particular in the neighborhood of the thin central electrode. 10 The amplification is about 10³fold to 10⁴-fold. (b) 102 15 D 10 Applied voltage AEA Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.3.2 Slide 1 (36/107)

<section-header><section-header><text><text><text><text><text><text>

4.3 AREA SURVEY METERS 4.3.3 Neutron area survey meters

To also detect fast neutrons, the counter is surrounded by a moderator made of hydrogenous material.

- The fast neutrons interacting with the moderator get thermalized.
- Subsequently they are detected by the BF₃ counter placed inside the moderator.

A) IAEA

The whole assembly is now a fast neutron counter.

Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.3.3 Slide 4 (41/107)

4.3	AREA SURVEY METERS 4.3.9 Properties of area survey meters: <i>Dose equivalent range</i>			
	Survey meters may cover a dose equivalent range from:			
	1 nSv/h	1 Sv/h		
but the typical range in use is:				
		1 µSv/h 1 Sv/h		
C	IAEA Review	of Radiation Oncology Physics: A Handbook for Teachers and Students - 4.3.9 Slide 9 (65/107)		

