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2.1. INTRODUCTION 
 
Radiation measurements and investigations of radiation effects require various specifications 
of the radiation field at the point of interest. Radiation dosimetry deals with methods for a 
quantitative determination of energy deposited in a given medium by directly or indirectly 
ionizing radiations. A number of quantities and units have been defined for describing the 
radiation beam and the most commonly used dosimetric quantities and their units are defined 
below. A simplified discussion of cavity theory, the theory that deals with calculating the 
response of a dosimeter in a medium, is also given. 
 
 
2.2. PHOTON FLUENCE AND ENERGY FLUENCE 
 
The following quantities are used to describe a monoenergetic ionizing radiation beam: 
particle fluence, energy fluence, particle fluence rate and energy fluence rate. These quantities 
are usually used to describe photon beams and may also be used in describing charged particle 
beams. 
 

• The particle fluence φ is the quotient dN by dA, where dN is the number of 
particles incident on a sphere of cross-sectional area dA 

 
 dN

dA
φ =  (2.1) 

 
 The unit of particle fluence is particles/cm2. The use of a sphere of cross-sectional 

area dA expresses in the simplest manner the fact that one considers an area dA 
perpendicular to the direction of each particle and hence that particle fluence is 
independent of the incident angle of the radiation. 
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 Planar particle fluence is the number of particles crossing a plane per unit area 

and hence depends on the angle of incidence of the particle beam. 
 

• The energy fluence Ψ is the quotient of dE by dA, where dE is the radiant energy 
incident on a sphere of cross-sectional area dA: 

 

 
Ψ =

dE
dA  (2.2) 

 
 The unit of energy fluence is J/m2. Energy fluence can be calculated from particle 

fluence by using the following relationship: 
 

 
  
Ψ =

dN
dA

E = ΦE , (2.3) 

 
` where E is the energy of the particle and dN represents the number of particles 

with energy E. 
 

• Almost all realistic photon or particle beams are polyenergetic and the above 
defined concepts need to be applied to such beams. The concepts of particle 
fluence spectrum and energy fluence spectrum replace the particle fluence and 
energy fluence, respectively. They are defined respectively as: 

 

 
    
ϕE (E ) ≡

dϕ
dE

(E )  (2.4) 

 
 and 
  

 ( ) ( ) ( )E
d dE E E
dE dE

EϕΨ
Ψ ≡ = × , (2.5) 

 
 where     ϕE (E )  and     ΨE (E) are shorthand notations for the particle fluence spectrum 

and the energy fluence spectrum, differential in energy E, respectively.  
 
 Figure 2.1. shows a photon fluence and an energy fluence spectrum generated by 

an orthovoltage x-ray unit with a kVp value of 250 kV and  an added filtration of  
1 mm Al and 1.8 mm Cu (target material: W; inherent filtration: 2 mm Be). The 
two spikes superimposed onto the continuous bremsstrrahlung spectrum represent 
the Kα and the Kβ characteristic x-ray lines produced in the tungsten target. 

 
• The particle fluence rate ϕ is the quotient of dφ  by dt where dφ is the increment 

of the fluence in the time interval dt : 
 

 d
dt
φϕ = ,  (2.6) 

 
with units of particles⋅m-2⋅s-1.  
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FIG. 2.1. Photon fluence and energy fluence spectra at 1 m from the target of an x-ray 
machine with tube potential 250 kV and added filtration of 1 mm Al and 1.8 mm Cu (target 
material: W; inherent filtration 2 mm Be). 
 

• The energy fluence rate (also referred to as intensity) is the quotient of dψ by dt, 
where dψ is the increment of the energy fluence in the time interval dt: 

 

 d
dt

ψ Ψ
= , (2.7) 

 
The unit of energy fluence rate is W/m2 or J⋅m-2s-1.  

 
 
2.3. KERMA 
 
Kerma is an acronym for Kinetic Energy Released per unit MAss. It is a non-stochastic 
quantity applicable to indirectly ionizing radiations, such as photons and neutrons. It quantifies 
the average amount of energy transferred from the indirectly ionizing radiation to directly 
ionizing radiation without concerns to what happens after this transfer. In the discussion that 
follows we will limit ourselves to photons. 

 
• Energy of photons is imparted to matter in a two-stage process. In the first stage, 

the photon radiation transfers energy to the secondary charged particles 
(electrons) through various photon interactions (photo-effect, Compton effect, pair 
production, etc). In the second stage, the charged particle transfers energy to the 
medium through atomic excitations and ionisations.  

 
• In this context, the kerma is defined as the mean energy transferred from the 

indirectly ionizing radiation to charged particles (electrons) in the medium   dE tr  
per unit mass dm: 
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 trdEK
dm

=   . (2.8) 

 
 The unit of kerma is joule per kilogram (J⋅kg-1). The special name for the unit of 

kerma is the gray (Gy), where 1 Gy = 1 J⋅kg-1. 
 
 
2.4. CEMA 
 
• Cema is the acronym for Converted Energy per unit MAss. It is a non-stochastic 

quantity applicable to directly ionizing radiations, such as electrons and protons. 
 

• The cema C is the quotient of dEc by dm, where dEc  is the energy lost by charged 
particles, except secondary electrons, in electronic collisions in a mass dm of a 
material: 

 

  cdEC
dm

=   .  (2.9) 

 
  The unit of cema is joule per kilogram (J⋅kg-1). The special name for the unit of 

cema is the gray (Gy). 
 

 
2.5. ABSORBED DOSE 
 
Absorbed dose is a non-stochastic quantity applicable to both indirectly and directly ionizing 
radiations. For indirectly ionizing radiations, energy is imparted to matter in a two step 
process.  In the first step (resulting in kerma) the indirectly ionizing radiation transfers energy 
as kinetic energy to secondary charged particles.  In the second step these charged particles 
transfer some of their kinetic energy to the medium (resulting in absorbed dose) and lose some 
of their energy in the form of bremsstrahlung losses. 
 

• The absorbed dose is related to the stochastic quantity energy imparted. The 
absorbed dose is defined as the mean energy ε imparted by ionizing radiation to 
matter of mass m in a finite volume V by:  

 

 dD
dm

ε
= . (2.10) 

 
• The energy imparted  ε is the sum of all energy entering the volume of interest 

minus all energy leaving the volume, taking into account any mass-energy 
conversion within the volume.  Pair production, for example, decreases the energy 
by 1.022 MeV, while electron-positron annihilation increases the energy by the 
same amount. 

   
• Note that because the electrons travel in the medium and deposit energy along 

their tracks, this absorption of energy does not take place at the same location as 
the transfer of energy described by kerma. The unit of absorbed dose is joule per 
kilogram (J⋅kg-1). The special name for the unit of absorbed dose is the gray (Gy). 
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2.6.   STOPPING POWER 
 
Stopping powers are widely used in radiation dosimetry, but they are rarely measured and 
have to be calculated from theory. For electrons and positrons the Bethe theory is used to 
calculate stopping powers. 
 

• The linear stopping power is defined as the expectation value of the rate of energy 
loss per unit path length ( )/dE dx  of the charged particle. The mass stopping 
power is defined as the linear stopping power divided by the density of the 
absorbing medium. Division by the density of the absorbing medium almost 
eliminates the dependence of the mass stopping power on mass density except for 
the density effect discussed further below. Typical units for the linear and the 
mass stopping powers are MeV/cm and MeV⋅cm2/g, respectively. 

 
• Two types of stopping powers are known: collision (ionisation) resulting from 

interactions of charged particles with atomic orbital electrons and radiative 
resulting from interactions of charged particles with atomic nuclei. 

 
• The unrestricted mass collision stopping power expresses the average rate of 

energy loss by a charged particle in all hard as well as soft collisions.  
 

- A soft collision occurs when a charged particle passes an atom at a consider-
able distance, i.e., b>>a where b is the impact parameter and a the atomic 
radius. The net effect of the collision is that a very small amount of energy is 
transferred to an atom of the absorbing medium in a single collision.  

- In a hard collision where b ≅ a, a secondary electron (often referred to as a 
delta electron) with considerable energy is ejected and forms a separate 
track.  

- In the unrestricted mass collision stopping power the maximum energy 
transfer to an orbital electron allowed due to a hard collision is half of the 
kinetic energy of the electron (collision of indistinguishable particles), or the 
full kinetic energy of a positron (collision of distinguishable particles). 

 
• The theory of the mass collision stopping power for heavy charged particles, 

electrons and positrons as a result of soft and hard collisions combines the Bethe 
theory for soft collisions with the stopping power as a result of energy transfers 
due to hard collisions. The result of this, for a heavy charged particle with mass M 
and velocity v, where the energy transfer due to hard collisions is limited 
to 2 /2 2 2(1em c )β β− , with   β = v / c , is: 

 

  
2 2 2

2col e e eA
2

4 2ln ln(1 )S r m c m vN Z z
A I

π 2 2β β
ρ β

  
= − − −  

  
,                                  (2.11) 

 
  where  
 
  re is the classical electron radius (2.82 fm), 

 z is the projectile charge in units of electron charge and  
 I   is the mean excitation potential of the medium. 
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•  The mean excitation potential I is a geometric mean value of all ionisation and 

excitation potentials of an atom of the absorbing material. Since binding effects 
influence the exact value of I, calculation models are often inadequate to 
accurately estimate its value. Hence, I values are usually derived from 
measurements of stopping powers in heavy charged particle beams for which the 
effects of scattering in these measurements is minimal. 

  
• For elemental materials I varies approximately linearly with Z, with, on average, 

I = 11.5 Z. For compounds I is calculated assuming additivity of the collision 
stopping power taking into account the fraction by weight of each atom 
constituent in the compound. 

 
• The following observations can be made from (Eq. (2.11)): 

 
- The mass stopping power does not depend on the projectile mass and is 

proportional to the inverse square of the projectile velocity. Note that the 
term  under the logarithm has no relation with a kinetic energy of any 
of the particles involved in the collision process.  

  2mov
2

- The mass stopping power gradually flattens to a broad minimum for kinetic 
energies .  2

e3KE m c≅
- The leading factor Z/A is responsible for a decrease of about 20% in stopping 

power from carbon to lead. The term   − ln I  causes a further decrease in 
stopping power with Z. 

- The square dependence on the projectile charge (z2) causes heavy charged 
particles with double the charge to have four times the stopping power. 

 
• For electrons and positrons, energy transfers due to soft collisions are combined 

with those due to hard collisions using the Moller (for electrons) and Bhabba (for 
positrons) cross-sections for free electrons. The complete mass collisional 
stopping power for electrons and positrons, according to ICRU Report 37, is: 

 

  

( )
2 2

2col o eA
2

2 2

2 2

2 ln / ln(1 / 2) ( )

with  given for electrons as 

( ) (1 )[1 / 8 (2 1) ln 2]

and  given for positrons as 

( ) 2 ln 2 ( /12)[23 14 /( 2) 10 /( 2) 4 /( 2) ].

S r m cN Z KE I F
A

F

F

F

F

π τ τ δ
ρ β

τ β τ τ

τ β τ τ τ

±

−

−

+

+

 = + + + 

= − + − +

= − + + + + + + 3

−

                 (2.12) 

 
  In this equation, τ =  and 2

e/KE m c   β = v / c .  
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• δ  is the density effect correction that accounts for the fact that the effective 

Coulomb force exerted on a fast charged particle by atoms that are distant from 
the particle track is reduced as a result of the polarization of the medium caused 
by the charged particle. The density effect affects the soft collision component of 
the stopping power. It plays a significant role in the values of ratios of stopping 
powers of a dense material to a non-dense material (such as, for example, water to 
air) and various models for it have been developed. 

 
• The mass radiative stopping power is the rate of energy loss by electrons or 

positrons that results in the production of bremsstrahlung. The Bethe-Heitler 
theory leads to the following formula for the mass radiative stopping power: 

 

 
2

2rad A
o e( )S N Z KE m c B

A
σ

ρ
= + r                (2.13) 

 
 where  
 
  where ( )22 2 28 2

o o e/(4 ) 5.80 10  cm /atome m cσ α πε −= = × α  is the fine structure 

constant, and rB  is a function of Z and KE, varying between 5.33 and 15 for 
energies in the range from less than 0.5 MeV to 100 MeV.  

 
 This factor together with the increase of the radiative stopping power proportional 

with KE is responsible for the increase in total stopping power at energies above 2 
MeV as depicted in Fig. 2.2. Note that the Z2 dependence of the mass radiative 
stopping power in contrast to the Z dependence of the mass collision stopping 
power makes this mode of energy loss more prominent in high-Z materials. 

 
• The concept of restricted mass collision stopping power is introduced to calculate 

the energy transferred to a localized region of interest. By limiting the energy 
transfer to secondary charged (delta) particles to a threshold (often denoted as ∆), 
highly energetic secondary particles are allowed to escape the region of interest.  

 
• The restricted stopping power is lower than the unrestricted stopping power. The 

choice of the energy threshold depends on the problem at hand. For problems 
involving ionisation chambers a frequently used threshold value is 10 keV (the 
range of a 10 keV electron in air is on the order of 2 mm). For microdosimetric 
quantities one usually takes 100 eV as a reasonable threshold value. 

 
• The restricted linear collision stopping power (also referred to as linear energy 

transfer) L∆ of a material, for charged particles, is the quotient of dE∆ by , 
where dE

 dl

∆ is the energy lost by a charged particle due to soft and hard collisions 
in traversing a distance    minus the total kinetic energy of the charged particles 
released with kinetic energies in excess of ∆: 

dl

 
 . (2.14)   /L dE d∆ ∆= l

 
 The restricted mass collision stopping power is the restricted linear collision 

stopping power divided by the density of the material. 
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FIG. 2.2. Unrestricted S/ρ and restricted ((L/ρ)∆ with ∆ = 10 keV and 100 keV) total mass 
stopping powers for carbon, based on data published in the ICRU Report 37. Vertical lines 
indicate the points at which restricted and unrestricted mass stopping powers begin to 
diverge as the kinetic energy increases. 

 
 

• As the threshold for maximum energy transfer in the restricted stopping power 
increases, the restricted mass stopping power tends to the unrestricted mass 
stopping power for ∆ → KE/2. Note also that since energy transfers to secondary 
electrons are limited to KE/2, unrestricted and restricted electron mass stopping 
powers are identical for kinetic energies lower than or equal to 2∆. This is 
indicated in Fig. 2.2. with vertical lines at 20 keV and 200 keV. 

 
• The total mass stopping power is the sum of the collision mass stopping power 

and the radiative mass stopping power. Figure 2.2. shows the total unrestricted 
and restricted (∆ = 10 keV, 100 keV) electron mass stopping powers for carbon 
based on the data in the ICRU Report 37. 

 
 
2.7.   RELATIONSHIPS BETWEEN VARIOUS DOSIMETRIC QUANTITIES 
 
2.7.1. Energy fluence and kerma (photons) 
 
The energy transferred to electrons by photons can be expended in two distinct ways: 
  

(1)  through collision interactions (soft collisions, hard collisions),  
(2)  through radiative interactions (bremsstrahlung, electron-positron annihilation).  
 

Therefore, the total kerma is usually divided into two components: the collision kerma Kcol  
and the radiative kerma Krad. 
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• Collision kerma Kcol is that part of kerma that leads to the production of electrons 

that dissipate their energy as ionisation in or near the electron tracks in the 
medium, and is the result of Coulomb-force interactions with atomic electrons. 
Thus, the collision kerma is the expectation value of the net energy transferred to 
charged particles per unit mass at the point of interest, excluding both the 
radiative energy loss and energy passed from one charged particle to another. 

 
• Radiative kerma Krad is that part of kerma that leads to the production of 

bremsstrahlung as the secondary charged particles are decelerated in the medium. 
It is the result of Coulomb field interactions between the charged particle and the 
atomic nuclei. 

 
• The total kerma K is thus given by the following equation: 
 
 K = Kcol + Krad .  (2.15) 
 
 The average fraction of the energy transferred to electrons that is lost through 

radiative processes is represented by a factor referred to as the bremstrahlung 
fraction g . Hence, the fraction lost through collisions is (1- g ).  

 
• A frequently used relation between collision kerma  and total kerma K may be 

written as follows: 
  Kcol

 
 col (1 )K K g= −   . (2.16) 
 
• For monoenergetic photons the collision kerma Kcol at a point in a medium is 

related to the energy fluence Ψ at that point in the medium by the following 
equation: 

 

 en
col    K µ

ρ
 

= Ψ  
 

 , (2.17) 

 
 where   (µen / ρ)  is the mass-energy absorption coefficient for the monoenergetic 

photons in the medium.  
 
• For polyenergetic beams, a formally similar relation exists, but use is made of 

spectrum-averaged quantities. If a photon energy fluence spectrum      is 
present at the point of interest, the collision kerma at that point is obtained as 
follows: 

ΨE(E )

 

  
max

en en
col E  ( )  d

E

o
K E Eµ µ

ρ ρ
   

= ∫ Ψ = Ψ   
   

  . (2.18) 
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  In Eq. (2.18)  stands for the total (integrated) energy fluence, and

 

max

E
0

( )
E

E dEΨ = Ψ∫
max

en
E

0

( ) ( )E E
ρ ρ

= Ψ∫en 1 E

dµ µ
Ψ 

E 
   is a shorthand notation for the mass energy 

absorption coefficient for the medium averaged over the energy fluence spectrum.  
 

• For mono-energetic photons the total kerma K at a point in a medium is related to 
the energy fluence Ψ in the medium by the following equation: 

 

  tr   K µ
ρ


= Ψ 

 


  , (2.19) 

 
  where   (µ tr / ρ) is the mass-energy transfer coefficient of the medium for the given 

monoenergetic photon beam. For poly-energetic beams, similarly as above, 
spectrum-averaged mass-energy transfer coefficients can be used in conjunction 
with total energy fluence to obtain the total kerma. 

 
• Note that, using Eq. 2.17, one can obtain the frequently used relation between 

collision kerma in two different materials, material 1 and material 2, as follows: 
 

   ( )
en

22
2col,2 en2
1

col,1 en 1
1

1

 
K
K

µ
ρ µ

ρµ
ρ

 
Ψ     = ≡ Ψ     Ψ  

 

  . (2.20) 

  This equation is often used in circumstances where the fluence ratio  can be 
assumed unity through a proper scaling of dimensions (the scaling theorem), or for 
very similar materials. 

( )2

1
Ψ

 
2.7.2.   Fluence and dose (electrons) 
 

• Under the conditions that (1) radiative photons escape the volume of interest and 
(2) secondary electrons are absorbed on the spot (or there is charged particle 
equilibrium of secondary electrons), the absorbed dose to medium Dmed is related 
to the electron fluence   φmed  in the medium as follows: 

 

  col
med med

med

  SD φ
ρ

 
=  

 
  ,  (2.21) 

 
  where (  is the unrestricted mass collision stopping power of the medium 

at the energy of the electron. 
)col med

/S ρ

 
• Because of electron slowing down, even for a mono-energetic starting electron, 

there is always a primary electron fluence spectrum in the medium which is 
differential in energy and can be denoted by ( )med,E Eφ .  
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In this case, the absorbed dose to the medium can be obtained by an integration of 
Eq. 2.20: 

 

 ( ) ( )
max

col col
med,E med

med med

    
E

med
o

S SD E E dEφ φ
ρ ρ

  
= =   

   
∫   . (2.22) 

 
 The right hand side of Eq. (2.21) shows that absorbed dose can be calculated using 

a formally similar equation as Eq. (2.20) by making use of spectrum-averaged 
collision stopping power and total fluence. 

 
• Based on Eq. (2.22) and under the same assumptions, for two media, med1 and 

med2, the ratio of absorbed doses can be calculated as: 
 

 ( )2

2 1
1 2 1

med col
med ,med

med med ,med

  
D S
D

φ
ρ

 
= ⋅ 

 
  , (2.23) 

 where the shorthand notations  and ( )
2 1med ,med

φ
2 1

col

med ,med

S
ρ

 
 
 

are being used for the 

ratio of the electron fluences (often referred to as the electron fluence ratio) and the 
collision stopping powers in the media med1 and med2, respectively. 

 
• The full, realistic electron fluence spectrum consists of primary charged particles 

that, for example, are the result of a poly-energetic photon beam interacting in the 
medium. These primary charged particles are slowed down and result in 
secondary particle fluence.  

 
2.7.3.  Kerma and dose (charged particle equilibrium) 
 
Generally, the transfer of energy (kerma) from the photon beam to charged particles at a 
particular location does not lead to the absorption of energy by the medium (absorbed dose) at 
the same location. This is due to the non-zero (finite) range of the secondary electrons released 
through photon interactions.  
 

• Since radiative photons mostly escape from the volume of interest, one relates 
absorbed dose usually to collision kerma. In general, however, the ratio of dose 
and collision kerma is often denoted as: 
 

     β = D / Kcol   . (2.24) 
 
 If radiative photons escape the volume of interest, an assumption is made that 

β ≈1. 
 

• Figure 2.3 illustrates the relationship between collision kerma and absorbed dose 
under build-up conditions; under conditions of charged particle equilibrium (CPE) 
in part (a) and under conditions of transient charged particle equilibrium (TCPE) 
in part (b). 
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As a high energy photon beam penetrates the medium, collision kerma is maximal 
at the surface of the irradiated material because photon fluence is greatest at the 
surface. Initially, the charged particle fluence, and hence the absorbed dose, 
increases as a function of depth until the depth of dose maximum     zm a x  is attained. 

 
• If there were no photon attenuation or scattering in the medium, but yet 

production of electrons, a hypothetical situation, as illustrated in Fig. 2.3(a), 
would occur: the build-up region (with β < 1) is followed by a region of complete 
CPE where     , i.e., β = 1.  D = Kcol

 
• In the more realistic situation, however, due to photon attenuation and scattering 

in the medium, a region of TCPE occurs (Fig. 2.3(b)) where there exists an 
essentially constant relation between collision kerma and absorbed dose. This 
relation is practically constant since, in high-energy photon beams, the average 
energy of the generated electrons and hence their range does not change 
appreciably with depth in the medium. 

 

 
FIG. 2.3.   Collision kerma and absorbed dose as a function of depth in a medium, irradiated 
by a high-energy photon beam. 
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• In the special case where true charged particle equilibrium exists (at the depth of 

maximum dose in the medium), the relation between absorbed dose D and total 
kerma K is given by: 

 
  col (1 )D K K g= = −   , (2.25) 
 
  where g  is the bremsstrahlung fraction, depending on the electron kinetic energy; 

the higher the energy, the larger is g . The bremsstrahlung fraction also depends 
on the material considered, with higher values of g  for higher Z materials. For 
electrons produced by cobalt-60 gamma rays in air the bremsstrahlung fraction 
equals to 0.0032. 

 
• The build-up of absorbed dose is responsible for the skin sparing effect in the case 

of high-energy photon beams. However, in practice the surface dose is small but 
does not equal zero because of the electron contamination in the beam due to 
photon interactions in the media upstream from the phantom or due to charged 
particles generated in the accelerator head and beam modifying devices. 

 
 
2.7.4.   Collision kerma and exposure 
 

• Exposure X is the quotient of dQ by dm, where dQ is the absolute value of the 
total charge of the ions of one sign produced in air when all the electrons and 
positrons liberated or created by photons in mass dm  of air are completely 
stopped in air: 

 

  dQX
dm

=   . (2.26) 

 
  The unit of exposure is coulomb per kilogram (C/kg). The special unit used for 

exposure is the roentgen R, where 1 R = 2.58 x 10-4 C/kg. In the SI system of units, 
roentgen is no longer used and the unit of exposure is simply 2.58×10-4 C/kg of 
air. 

 
• The average energy expended in air per ion pair formed Wair is the quotient of E 

by N, where N is the mean number of ion pairs formed when the initial kinetic 
energy E of a charged particle is completely dissipated in air: 

 

  air
EW
N

=   . (2.27) 

 
 The current best estimate for the average value of Wair is 33.97 eV/ion pair or  

   33.97 × 1.602 × 1019 J/ion pair: 
 

  ( ) ( )
( )

19
air

19

33.97 eV / 1.602 10 J / eV
   33.97 J/C .

1.602 10 C /
ion pairW

e ion pair

−

−

× ×
= =

×
 (2.28) 
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• Multiplying the collision kerma by ( )air/e W , the number of coulombs of charge 
created per joule of energy deposited, gives the charge created per unit mass of air 
or exposure: 

 

  ( )col air
air

 eX K
W

 
=  

 
 . (2.29) 

 
• The relationship between total kerma and exposure is obtained by combining 

Eq. 2.25 and Eq. 2.29 to get: 
 

  air
air

1    
1

WK X
e g

 =   − 
.  (2.30) 

 
 
2.8 CAVITY THEORY 
 
In order to measure the absorbed dose in a medium, it is necessary to introduce a radiation 
sensitive device (dosimeter) into the medium. Generally, the sensitive medium of the 
dosimeter will not be of the same material as the medium in which it is embedded. Cavity 
theory relates the absorbed dose in the dosimeter sensitive medium (cavity) to the absorbed 
dose in the surrounding medium containing the cavity. Cavity sizes are referred to as small, 
intermediate or large in comparison with the ranges of secondary charged particles produced 
by photons in the cavity medium. If, for example, the range of charged particles (electrons) is 
much larger than the cavity dimensions, the cavity is regarded as small. Various cavity 
theories for photon beams have been developed depending on the size of the cavity, such as 
the Bragg-Gray and Spencer-Attix theories for small cavities and the Burlin theory for cavities 
of intermediate sizes. 
 
2.8.1. The Bragg-Gray cavity theory 

 
The Bragg-Gray (B-G) cavity theory was the first cavity theory developed to provide a 
relationship between absorbed dose in a dosimeter and the absorbed dose in the medium 
containing the dosimeter.  
 

• The conditions for application of the Bragg-Gray cavity theory are: 
 

(1) the cavity must be small when compared with the range of charged particles 
incident on it so that its presence does not perturb the fluence of charged 
particles in the medium; 

(2) the absorbed dose in the cavity is deposited solely by charged particles 
crossing it, i.e., photon interactions in the cavity are assumed negligible and 
thus ignored. 

 
The result of condition (1) is that the electron fluences in Eq. (2.22) are the same 
and equal to the equilibrium fluence established in the surrounding medium. This 
condition can only be valid in regions of CPE or TCPE.  In addition, the presence 
of a cavity always causes some degree of fluence perturbation that requires the 
introduction of a fluence perturbation correction factor.  
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Condition (2) implies that all electrons depositing the dose inside the cavity are 
produced outside the cavity and completely cross the cavity. Therefore, no 
secondary electrons are produced inside the cavity and no electrons stop within 
the cavity.  

 
• Under these two conditions, according to the Bragg-Gray cavity theory, the dose 

to the medium Dmed is related to the dose in the cavity Dcav as follows: 
 

  med cav
med,cav

  SD D
ρ

 
=  

 
, (2.31) 

   
  where     (S / ρ)med,cav  is the ratio of the average unrestricted mass collision stopping 

powers of the medium and cavity. The use of unrestricted stopping powers rules 
out the production of secondary charged particles (or delta electrons) in the cavity 
and the medium. 

 
• Although the cavity size is not explicitly taken into account in the Bragg-Gray 

cavity theory, the fulfillment of the two Bragg-Gray conditions will depend on the 
cavity size which is based on the range of the electrons in the cavity medium, the 
cavity medium, and electron energy. A cavity that qualifies as a Bragg-Gray 
cavity for high energy photon beams, for example, may not behave as a Bragg-
Gray cavity in a medium-energy or low-energy x-ray beam.  

 
2.8.2.  The Spencer-Attix cavity theory 
 

• The Bragg-Gray cavity theory does not take into account the creation of 
secondary (delta) electrons generated as a result of the slowing down of the 
primary electrons in the sensitive volume of the dosimeter.  The Spencer-Attix (S-
A) cavity theory is a more general formulation that accounts for the creation of 
these electrons which have sufficient energy to produce further ionisation on their 
own account. Some of these electrons released in the gas cavity would have 
sufficient energy to escape from the cavity carrying some of their energy with 
them. This reduces the energy absorbed in the cavity and requires modification to 
the stopping power of the gas.  The Spencer-Attix cavity theory operates under the 
two Bragg-Gray conditions, however, these conditions now even apply to the 
secondary particle fluence in addition to the primary charged particle fluence. 

 
• The secondary electron fluence in the Spencer-Attix theory is divided into two 

components based on a user-defined energy threshold ∆. Secondary electrons 
with kinetic energies KE less than ∆ are considered slow electrons that deposit 
their energy locally; secondary electrons with energies larger than or equal to ∆ 
are considered “fast” (slowing down) electrons and are part of the electron 
spectrum.  Consequently, this spectrum has a low energy threshold of  and a 
high-energy threshold of KE

∆
o where KEo represents the initial electron kinetic 

energy. Since the lowest energy in the spectrum is ∆, the maximum energy loss of 
a fast electron with kinetic energy KE larger than or equal to 2∆ cannot be larger 
than  and the maximum energy loss of a fast electron with kinetic energy less 
than 2∆ cannot be larger than KE/2 (where ∆ ≤ KE < 2∆). 

∆
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• The energy deposition must be calculated as the product of     L∆ (KE ) / ρ , the 
restricted collision stopping power with threshold ∆, and the fast electron fluence 
with electrons ranging in energy from ∆ to KEo 

 
• Because of the Bragg-Gray condition which stipulates that there must not be 

electron production in the cavity, the electrons with energy  must be capable of 
crossing the cavity. Hence, the threshold value ∆ is related to the cavity size and is 
defined as the energy of the electron with range equal to the mean chord length 
across the cavity. 

∆

 
• The Spencer-Attix relation between the dose to the medium and the dose in the 

cavity is thus written as: 
 

 
    
Dmed / Dcav = smed,cav , (2.32) 

 
where     is the ratio of the mean restricted mass collision stopping powers from 
the medium to the cavity.  

smed,cav

 
Using the medium electron fluence spectrum ( )med,

KE KEδΦ , the full expression is: 
 

 
( )( )
( )( )

o

o

med,
,m med

med,cav med,
,c cav

( )

( )

KE

KE ed

KE

KE av

KE L d KE TE
s

KE L d KE TE

δ

δ

ρ

ρ

∆∆

∆∆

Φ +
=

Φ +

∫
∫

. (2.33) 

 
The terms TEmed and TEcav are called the track-end terms and account for a part of 
the energy deposited by electrons with initial kinetic energies between ∆ and 2∆.  
These electrons can have an energy loss that brings their kinetic energy to lower 
than ∆. Their residual energy after such events should be deposited on the spot and 
these electrons are removed from the spectrum. The track-end terms are 
approximated by Nahum as: 
 

 ( ) ( )medmed,
med KE

S
TE δ

ρ
∆

= Φ ∆ ∆ , (2.34) 

 
 and 
 

 ( ) ( )cavm ,
cav KE

ed S
TE δ

ρ
∆

= Φ ∆ ∆ . (2.35) 

 
Note that the unrestricted collision stopping powers can be used here because the 
maximum energy transfer for an electron with energy less than 2∆ is less than ∆. 

 
• Monte Carlo calculations showed that the difference between the Spencer-Attix 

and Bragg-Gray cavity theories is non-negligible yet generally not very 
significant. Since collision stopping powers for different media show similar 
trends as a function of particle energy, their ratio for the two media is a very 
slowly varying function with energy.  
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• For a typical ionisation chamber used in water, the energy dependence of the 
stopping power ratio water-to-air arises from the difference in the density effect 
correction between the two materials. 

 
2.8.3.  Considerations in the application of cavity theory to ionisation chamber 

calibration and dosimetry protocols 
 

• A dosimeter can be defined generally as any device that is capable of providing a 
reading that is a measure of the average absorbed dose deposited in its (dosimeter) 
sensitive volume by ionizing radiation. A dosimeter can generally be considered 
as consisting of a sensitive volume filled with a given medium, surrounded by a 
wall of another medium. 

 
• In the context of cavity theories, the sensitive volume of the dosimeter can be 

identified as the “cavity”, which may contain a gaseous, liquid or solid medium. 
Gas is often used as the sensitive medium, since it allows a relatively simple 
electrical means for collection of charges released in the sensitive medium by 
radiation. 

 
• The medium surrounding the cavity of an ionisation chamber depends on the 

situation in which the device is used. In an older approach, the wall (often 
supplemented with a build-up cap) serves as the build-up medium and the Bragg-
Gray theory provides a relationship between the dose in the gas and the dose in 
the wall. This situation is referred to as a thick-walled ionisation chamber and 
forms the basis of cavity chamber-based air-kerma in air standards and of the C λ -
based dosimetry protocols of the 1970s. If, however, the chamber is used in a 
phantom without a build-up material, since typical wall thicknesses are much 
thinner than the range of the secondary electrons, the proportion of the cavity dose 
due to electrons generated in the phantom greatly exceeds the dose contribution 
from the wall and hence, the phantom medium serves as the medium and the wall 
is treated as a perturbation to this concept. 

 
• In the case of a thick-walled ionisation chamber in a high energy photon beam, 

the wall thickness must be greater than the range of secondary electrons in the 
wall material to ensure that the electrons that cross the cavity arise in the wall and 
not in the medium. The Bragg-Gray cavity equation then relates the dose in the 
cavity to the dose in the wall of the chamber. By assuming that (1) the absorbed 
dose is the same as collision kerma and further assuming that (2) the photon 
fluence is not perturbed by the presence of the chamber, the dose in the medium is 
related to the dose in the wall by means of a ratio of the mass energy absorption 
coefficients of the medium and the wall ( )en med,wall

/µ ρ . The dose to the cavity gas 
is related to the ionisation produced in the cavity as follows: 

 

   gas
gas    

WQD
m e

 
=  

 
   , (2.36) 

 
  where Q  is the charge (of either sign) produced in the cavity and m is the mass of 

the gas in the cavity.  
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• Spencer-Attix cavity theory can be used to calculate the dose in the medium as: 
                      (2.37) 

 gasen en en
med wall gas wall,gas wall,gas

med,wall med,wall med,wall

,
WQD D D s s

m e
µ µ
ρ ρ

      
= = =       

      

µ
ρ

  

 
  where     is the ratio of restricted mass collision stopping powers for cavity wall 

and gas with threshold 
swall,gas

∆. In practice, there are additional correction factors 
associated with Eq. (2.36) to satisfy the assumptions (1) and (2) made above.  

 
  A similar equation to Eq. (2.36) is used for air-kerma in air calibrations, however, 

here the quantity of interest is not the dose to the medium rather it is the air-kerma 
in-air. In this case, a substantial wall correction is introduced to ensure the 
presence of complete CPE in the wall to satisfy assumption (1) above. 

 
• In the case of a thin-walled ionisation chamber in a high energy photon or electron 

beam, the wall, the cavity and the central electrode are treated as a perturbation to 
the medium fluence and the equation now involves the ratio of restricted collision 
stopping powers medium to gas as: 

 

 gas
med med,gas fl dis wall cel 

WQD s p p
m e

 
=  

 
p p , (2.38) 

 
where  
 
    pfl  is the electron fluence perturbation correction factor; 

    pdis  is the correction factor for displacement of the effective measurement point  

    pwall   is the wall correction factor, and  

    pcel   is the correction factor for the central electrode.  
 
Values for these multiplicative correction factors are summarized for photon and 
electron beams in typical dosimetry protocols (see Section 9.7 for details). 

 
2.8.4. Large cavities in photon beams 
 
A large cavity is a cavity with dimensions such that the dose contribution made by electrons 
inside the cavity originating from photon interactions outside the cavity can be ignored when 
compared with the contribution of electrons created by photon interactions within the cavity. 
 
For a large cavity the ratio of dose cavity to medium is calculated as the ratio of the collision 
kerma in the cavity to the medium and is therefore equal to the ratio of the average mass-
energy absorption coefficients, cavity to medium: 
 

gas en

med gas,med

D
D

µ
ρ

 
=  

 
, (2.39) 

 
where the mass-energy absorption coefficients have been averaged over the photon fluence 
spectra in the cavity gas (numerator) and in the medium (denominator). 
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2.8.5. Burlin cavity theory for photon beams 
 
Burlin extended the Bragg-Gray and Spencer-Attix cavity theories to cavities of intermediate 
dimensions by introducing, on a purely phenomenological basis, the large cavity limit to the 
Spencer-Attix equation using a weighting technique. He provided a formalism to calculate the 
value of the weighting parameter. 
  

• The Burlin cavity theory can be written in its simplest form as follows: 
 

  gas en
gas,med

med gas,med

 (1 ) 
D

d s d
D

µ
ρ

 
= + −  

 
 , (2.40) 

 
  where  
 
  d  is a parameter related to cavity size approaching unity for small 

cavities and zero for large ones;  
    is the mean ratio of the restricted mass stopping powers of the 

cavity and the medium;  
    sgas,med

   is the absorbed dose in the cavity and      Dgas

  ( )en gas,med
µ ρ  is the mean ratio of the mass-energy absorption coefficients for the 

cavity and the medium.  
 

• The Burlin theory effectively requires that: 
 

(1)       The surrounding medium and the cavity medium are homogeneous; 
(2) A homogeneous photon field exists everywhere throughout the medium and 

the cavity; 
(3) Charged particle equilibrium exists at all points in the medium and the 

cavity that are further than the maximum electron range from the cavity 
boundary; 

(4) The equilibrium spectra of secondary electrons generated in the medium 
and the cavity are the same. 

 
• Burlin provided a method for estimating the weighting parameter d in his theory. 

It is expressed as the average value of the electron fluence reduction in the 
medium. Consistent with experiments with β-sources he proposed that the 
electron fluence in the mediumΦ  med

e , on average, decays exponentially. The value 
of the weighting parameter d in conjunction with the stopping power ratio can be 
calculated as:   

 

 
med

0

med
0
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L
e l

L

L
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= =
Φ
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where β is an effective electron fluence attenuation coefficient that quantifies the 
reduction in particle fluence from its initial medium fluence value through a cavity 
of average length L. For convex cavities and isotropic electron fluence distri-
butions, L can be calculated as 4V/S where V is the cavity volume and S its surface 
area. Burlin described the build-up of the electron fluence Φ  inside the cavity 
using a similar, complementary equation: 

  gas
e

 

 
gas

0

gas
0

(1 )
11

L
e l
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L
e

e dl
L ed
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dl

β
ββ

β

−
−

Φ −
− +

− = =
Φ

∫

∫
. (2.42) 

 
• Burlin’s theory is consistent with the fundamental constraint of cavity theory that,  

the weighting factors of both terms add up to unity (i.e., d and 1-d). It had relative 
success in calculating ratios of absorbed dose for some types of intermediate 
cavities. More generally, however, Monte Carlo calculations show that, when 
studying ratios of directly calculated absorbed doses in the cavity to absorbed 
dose in the medium as a function of cavity size, the weighting method is too 
simplistic and additional terms are necessary to calculate dose ratios for 
intermediate cavity sizes. For these and other reasons, the Burlin cavity theory is 
no longer used in practice. 

 
2.8.6. Stopping power ratios 
 

• Although cavity theory was designed to calculate ratios of absorbed doses, the 
practical application of the Spencer-Attix cavity theory has always required 
additional correction factors. Since the central component of Spencer-Attix cavity 
theory results in averaging stopping powers, Spencer-Attix dose ratios are often 
referred to as “stopping power ratios”.  

 
• Stopping power ratios not only play a role in the absolute measurement of 

absorbed dose, they are also relevant in performing accurate relative 
measurements of absorbed dose in regimes where the energy of the secondary 
electrons changes significantly from one point in a phantom to another. An 
important example of this is apparent from Fig. 2.4 which shows restricted 
stopping power ratios (∆ = 10 keV) of water to air for electron beams as a 
function of depth in water. Note that these curves are for mono-energetic 
electrons; protocols or codes of practice for electron dosimetry provide fits of 
stopping power ratios for realistic accelerator beams. However, Fig. 2.4 shows 
clearly that the accurate measurement of electron beam depth dose curves requires 
depth-dependent correction factors. 

 
• In photon beams, except at or near the surface, average restricted stopping power 

ratios of water to air do not vary significantly as a function of depth. Stopping 
power ratios (with ∆ = 10 keV) under full build-up conditions are given in 
Table 2.1. 

 
• More detailed information on stopping power ratios is given in Section 9.5. 
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FIG. 2.4. Restricted collision stopping power ratio of water to air (∆ = 10 keV) as a 
function of depth for different mono-energetic electron energies. 

 
 
TABLE 2.I.  AVERAGE RESTRICTED STOPPING POWER RATIO OF WATER TO AIR 
FOR DIFFERENT PHOTON SPECTRA IN THE RANGE FROM COBALT-60 GAMMA 
RAYS TO 35 MV X RAYS. 
 

 Photon Spectra 
 

,water airs  
 

60Co 
 

 
1.134 

4 MV 
 

1.131 

6 MV 
 

1.127 

8 MV 
 

1.121 

10 MV 
 

1.117 

15 MV 
 

1.106 

20 MV 
 

1.096 

25 MV 
 

1.093 

35 MV 
 

1.084 

57 



 

58 

Chapter 2.   Dosimetric Principles, Quantities and Units 
 

 
 
 

BIBLIOGRAPHY 
 

ATTIX, F.H., “Introduction to radiological physics and radiation dosimetry”., John Wiley, 
New York, New York, U.S.A. (1986). 
 
GREENING, J.R., “Fundamentals of radiation dosimetry”, Adam Hilger, Bristol, United 
Kingdom (1981). 
 
INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS, 
(ICRU), “Stopping powers for electrons and positrons”, ICRU Report 37, ICRU, Bethesda, 
Maryland, U.S.A.  (1984). 
 
INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS, 
(ICRU), “Fundamental quantities and units for ionizing radiation”, ICRU Report 60, ICRU, 
Bethesda, Maryland, U.S.A.  (1998). 
 
JOHNS, H.E., CUNNINGHAM, J.R., “The physics of radiology”, Thomas, Springfield, 
Illinois, U.S.A. (1985). 
 
 
 


	WYNAND STRYDOM
	
	
	
	
	
	
	Department of Medical Physics
	Medical University of South Africa




	STOPPING POWER
	2.7.  RELATIONSHIPS BETWEEN VARIOUS DOSIMETRIC QUANTITIES
	
	
	
	
	Photon Spectra









